
Proceedings of Student-Faculty Research Day, CSIS, Pace University, May 2nd, 2014

Text Input Biometric System Design
for Handheld Devices

Naif Alotaibi, Emmanuel Pascal Bruno, Michael Coakley, Alexander Gazarov,

Vinnie Monaco, Stephen Winard, Filip Witkowski, Alecia Copeland,
Peter Nebauer, Christopher Keene, and Joshua Williams

Seidenberg School of CSIS, Pace University, White Plains, New York

Abstract—The development of networks, especially the
Internet, is changing the way we do computing. The addition of
multiple devices, such as smartphones and tablets, gives us new
ways to access information, but at the same time makes sensitive
information more prone to be lost or used by unauthorized users.
In an effort to respond to those new threats, keystroke biometrics
is an area being extensively studied for continuously
authenticating users on those devices. Keystroke biometrics is a
promising solution that will help guarantee the security of
sensitive information and device access. It uses the keyboard only
and is invisible to the user. Keystroke biometrics takes advantage
of the natural style and rhythm in which a user inputs characters
on a soft or hard keyboard. Keystroke rhythms, area covered on
a soft keyboard for a particular key, and timing can be measured
to build a biometric pattern for identification and authentication.
This paper describes user interaction with a touch screen device
using a soft keyboard and the data that can be mined from a soft
keyboard. We present the structure and technical details of our
biometric keyboard for the Android platform and our data
collection process in our test cases.

Index Terms—biometrics, pattern recognition, keystroke
biometric, user authentication, user identification, mobile devices

I. INTRODUCTION
N recent years, handheld devices such as smartphones and
tablet computers are playing a major role in our daily
activities. With an estimated 837 million smartphones to

be sold worldwide in 2013 [3], these devices are becoming
important, not only for personal use and leisure activities, but
also for business use. Today, many corporations and
government agencies are distributing handheld devices to their
employees in order to use them as part of their daily job
routine. As a result, the issue of securing data on these
handheld devices is becoming more critical, especially since
these devices contain valuable business information.
Currently, most handheld devices implement a front-line
authentication measure, such as a password, to grant the user
access to the device. However, such measures could be
rendered ineffective through user negligence, social
engineering, or any other means. Therefore, protecting data
and enforcing proper access control for handheld devices
remains a challenge, especially if you consider how user-
friendly and costly the solution would be.

An implicit authentication measure, which is based on
actions that users would carry out anyway [11], could be the
solution to the problem of securing data on handheld devices.
Implicit authentication measures could be highly useful for
government agencies and businesses, which rely heavily on
having secure access to their information systems. These
measures will allow us to verify that the user who originally
was authenticated is the user still using the system; therefore,
any unauthorized access to the system would be detected even
when front-line authentication measures fail to stop it. One of
the government agencies that are interested in this area is
DARPA, The Defense Advanced Research Projects Agency,
with their Active Authentication program (AA). The purpose
of this program is to “develop novel ways of validating the
identity of the person at the console that focus on the unique
aspects of the individual through the use of software based
biometrics” [7]. The agency believes that current methods of
authenticating users can be improved by adding biometric
authentication measures in order to detect any possible
intruders.

A keystroke biometric, which refers to identifying users
based on analyzing their typing patterns [9], is an implicit and
continuous measure that could be used to authenticate users.
This measure could take place without heavy user
involvement, and it requires no additional cost to implement.
Also, it has proven to be an effective authentication measure
when tested on personal computer keyboards when sufficient
input samples are available, and the same type of keyboard is
being used [12]. In most handheld devices, the screen is used
as a virtual keyboard for entering data and it includes
powerful touch sensors that are capable of translating user
touches into text. Handheld devices are personal, which
allows gathering sufficient input samples and guarantees that
the same keyboard would be used for both sample input and
authentication testing. Implementing such a security measure
on handheld devices allows the system to continuously check
for user’s identity implicitly without interfering with the
user’s regular activities, without affecting the user-
friendliness, and without adding any additional hardware costs
to implement it.

The Keystroke Biometric System at Pace University
(PKBS) is one of the systems that are being used for

I

B7.1

authentication and identification purposes [12]. In this
research paper, we investigate the viability of the Pace
University Biometric System on handheld devices and how
the keystroke biometric patterns can be captured and analyzed.

II. RELATED WORK
Research around keystroke data is not a new topic: Either

it was done to find common user typing behavior or to
differentiate between different patterns. Measuring keystroke
data on mobile devices, on the other hand, is a relatively new
topic of research.

In 2007, some studies started to focus on keystroke
authentication on mobile devices. In [4], the authors focused
on two keystroke characteristics to perform the analysis,
keystroke latency and hold-time. However, this study was
mainly for mobile devices with an attached physical keyboard
and not a virtual touch screen keyboard.

In 2012, three researchers from different universities in
Germany conducted research on typing behavior using virtual
keyboards on mobile devices [8]. They created a game, in
which a user is prompted to type words displayed in white
circles above the keyboard. The user has a limited amount of
time to type these words. Data about the mobile device, user
performance, and touch position for each key were collected.

They have taken three approaches to prove or disprove
their assumptions. They found that shifting the position of key
labels did not significantly impact typing performance or error
rate. However, they proved that “showing the users where
they touch using a dot clearly improves the error rate” [8].

The third experiment showed that simple shift of touch
position, used in the standard Android keyboard, improves
user performance, but not the error rate. This research is not
directly related to looking for keystroke patterns on mobile
devices, but it is the first research based on keystroke data
obtained from mobile devices by using a custom virtual
keyboard.

In the 2009 Proceedings of the 12th International
Symposium on Recent Advances in Intrusion Detection in
Berlin, four researchers from the National University of
Computer Science and Emerging Sciences in Islamabad
published a paper which is similar to our topic: “Keystroke-
based User Identification on Smart Phones” [13]. They
showed that keystroke data on smartphones can be used to
accurately identify a user. They collected keystroke
information from 25 mobile users, with different background
and age groups. Based on the data, the authors determined six
different key features: key holding time, error rate (number of
backspaces pressed), horizontal digraph, vertical digraph, non-
adjacent horizontal and vertical digraph (the time differences
between pressing horizontally or vertically aligned keys,
adjacent or not).

Even though the goal of this research is similar to the
present one, the domain of their research is different. In the
aforementioned research, the author tests keystroke
information from both feature phones and smartphones with

12-key hardware keyboards. The present paper instead focuses
on modern smartphones, which no longer use 12-key
keyboards. However, this paper can still be used to gain some
insight for the present paper, especially during the second
phase, an interpretation of collected data and division of users
into groups.

III. BACKGROUND
Keyboard input on mobile devices is a broad subject.

Before 2007, when the first iPhone was introduced, most
mobile phones were 12-key devices. The only way to input
text using them was using the multi-tap method, sometimes
with help of a predictive text system such as T9. Few phones
had full QWERTY keyboards: They were either hardware
keyboards like BlackBerry or software keyboards intended for
stylus input on early Windows Mobile or Palm PDAs and
phones.

After Apple introduced the iPhone, one of the first popular
phones that promoted the idea of using fingers for device
manipulation instead of a stylus, all other companies had to
catch up. In October 2008, HTC had presented the G1, the
first Android phone. This model had a full QWERTY
keyboard. However, it was a hardware keyboard, as virtual
keyboards were unsupported in the earliest versions of the OS.
In November 2008, the A7 SMS app was published in the
Android Market. It featured the first soft keyboard for
Android, which was not very functional.

The first Android devices with virtual keyboards started
showing up in the first quarter of 2009, together with Android
OS v. 1.5 Cupcake. Even though Apple was the first creator of
the soft keyboard, Google quickly caught up and overtook the
market in this area. A significant reason for that was that
Android was more open than iOS, and its APIs allowed for
building custom input method services, including keyboards,
which are a special case of an input method. While the iPhone
has had a user-friendly virtual keyboard from its early
versions, its keyboard has remained fundamentally unchanged
since 2007. In Android, we have seen an extensive evolution
of both built-in software keyboards and custom input services.

Among the innovations in Android with the widest impact
was the Swype keyboard, which has subsequently spawned
many different versions and implementations. The main idea
behind the application is that the keys are not tapped, but
rather included in a drawn gesture, and the application then
tries to guess which word the user wanted to enter. The first
implementation of this keyboard was, however, not on
Android, but on a Windows Mobile phone, the Samsung
Omnia II. This keyboard application presents a certain
learning curve, but once users master it, they can type very
fast. On the first device, Omnia II, users began breaking
records of text messaging speed, reaching up to 58 words per
minute, or around 370 characters.

Today’s keyboards use a combination of gesture (Swype-
like) and tap input, with dictionaries, word autocomplete, and
word prediction. In the latest version of Android, the keyboard

B7.2

started to include gesture input, so that became a standard way
to input the text on the Android platform. Gesture input
keyboards, however, still include regular key tapping input.

All of these features and combinations create many
different typing behaviors. Some people use keyboard
dictionaries or autocomplete, while some people don’t. Users
type, use gestures, or do both at the same time, and either use
capital letters or do not. To type special characters, users can
either press and hold a letter key or use a special key to toggle
between QWERTY layout and alphanumeric layout. Some
people may type using one hand with the index finger, while
other people may type with both hands using the thumbs. In
addition, keyboard layout may differ between portrait and
landscape view: If the user turns the phone sideways, the keys
become wider and easier to tap.

Mobile devices can also be roughly divided into phones
and tablets, which is important since their screens differ
significantly in size. On the tablets, a keyboard can also be
split into two parts, one for each hand. Another kind of
keyboard is the type that has unequal key sizes, where larger
keys are utilized for more frequently used characters [6]. Key
size may also be either static or dynamic.

IV. METHODOLOGY

A. Keyboard Types and Features

The vast amount of possibilities makes the keystroke
pattern research broad, and there is a need to limit the number
of the possibilities initially. Summarizing the points
mentioned in the previous section, we can define several
keyboard types:

1) Hardware keyboard;
2) Software keyboard with tap input;
3) Software keyboard with tap and gesture input.

Additional features which may be present in the keyboards
are as follows:

- Word correction (always present in gesture input
keyboards);

- Word completion;
- Key sizing (static or dynamic);
- Symbol input with long presses.

Word correction and completion can also be augmented
with a user dictionary for custom words.

The number of features is vast, so in order to implement
the system, we have to limit the number of features available
initially. Since most of the devices come with a software
keyboard, it is prudent to focus on this type of keyboard. Tap
input is the most basic type of input, familiar to users of all
platforms (gesture input is not available on all the major
mobile platforms). The optional features may be omitted for
the initial iteration of the system, as they are not essential. It
is, however, desirable to expand the system capabilities and
include additional features in the future.

B. OS Choice

The first step in implementing a project is selecting the
mobile platform which the system is going to be built on. The
most popular platforms are currently Android, iOS, Black-
Berry, and Windows Phone, with the first two accounting for
more than 90% of the mobile market [5].

1) iOS: Generally, the main input scheme on iOS is limited
to the software keyboard. There are no hardware keyboards on
devices which work on iOS. However, iOS devices do not
allow custom keyboards to be installed, and they also don’t
allow logging of the keystrokes on the keyboard unless a
“jailbreak” is performed on the device. This makes
development for iOS infeasible.

2) Android: Android provides various options for typing in
the text, as it supports both hardware and software keyboards.
The former can be regular QWERTY or 12-key, which are
closer to the traditional keyboards on cell phones. Most of the
devices on the market presently do not use hardware
keyboards and rely on software input instead. Most
importantly, Android allows custom text input services to be
built, including keyboards, which enables us to create a
custom keyboard to collect the necessary user data. In addition
to these technical considerations, Android has 79% market
share which makes it by far the most popular mobile platform.
Therefore the decision was made to select Android as the
main OS to implement the biometric system.

C. Raw Data Capture

Data captured from the handheld device input system can
be divided into four groups.

1) Mechanical Keyboard Data: On mechanical keyboards,
the keystrokes are represented as presses of physical buttons:
the key pressed, the time the key was pressed, and the time the
key was released [10]. When a hardware keyboard is used on
modern mobile phones, the same parameters can be obtained
for each keystroke. However, this study is focused on the tap
input on soft keyboards.

2) Touch Screen Data: This data type is unique for
handheld devices with touch screens that collect additional
parameters related to the way the screen is touched by the
user: how hard it was pressed, the touch area size, and the
exact touch position.

3) Configuration-based Data: Some additional
considerations should be taken into account when capturing
data on mobile devices. Regular keyboards on PCs and
laptops mostly have similar configurations and are not
significantly different from each other. Mobile devices,
however, are very different and can have many screen sizes
and pixel densities. Even the same device can be used in two
modes, portrait orientation and landscape orientation, and the
user types may differ depending on the current configuration.
Orientation also has a noticeable effect on the keyboard itself
as it has to adjust to the changed parameters of the screen.

B7.3

Another important consideration is that software
keyboards usually do not display all the possible symbols on a
single screen, due to limited available area size. This is
remedied by presenting the user with different ways to input
additional symbols, such as alternative layouts (for example,
for numbers and symbols) and by using long key presses on
some of the buttons. Therefore, current layout and long
presses should also be taken into account when designing the
application to capture raw data.

4) Sensor-based Data: Mobile devices also present
additional options which may be useful for the purposes of
improving the system performance. Many mobile devices are
equipped with various sensors, which can be used by the
applications. One of the most popular sensors is the
accelerometer, which allows us to track device position and
motion. When the user presses a key on the screen, the
accelerometer will detect the movement of the device. Also,
the accelerometer can be used to track the device location.
Since this type of sensor is installed into a large number of
modern devices, it is useful to read and capture this type of
data as well.

D. Features

As it has been mentioned before, the focus of the system
described in the paper is on the second keyboard type: a
software keyboard with tap input. Even though the key presses
are similar to the regular keyboard, there are still several key
differences. Keys may be pressed and not necessarily released,
whereas on a hard keyboard, every key that is pressed must
eventually be released. This happens when a user presses a
key and slides the touch device (finger or stylus) to a
neighboring key. The first key that was touched will generate
a press event and the last key that was touched will generate a
release event. For this reason, events are represented in the
following way: each event 𝑒𝑒 occurs instantaneously at time 𝑡𝑡.
Each event is uniquely determined by the type of action 𝑎𝑎
(either press or release) and the key 𝑘𝑘 which the event
occurred on. There is also has a vector of attributes 𝑣𝑣
associated with the event, which depend on what sensors are
available on the device.

𝑒𝑒 = (𝑎𝑎, 𝑘𝑘, 𝑡𝑡, 𝑣𝑣)

There are other attributes in the vector besides the key-
press-related ones. For example, the study also makes use of
the accelerometer to detect the acceleration and orientation of
the devices at the time of each event. The attributes are
described in more detail in the section about the system
design. A sample 𝑆𝑆 is a sequence of 𝑁𝑁 events.

𝑆𝑆 = (𝑒𝑒𝑖𝑖), 𝑖𝑖 ∈ 1 …𝑁𝑁

Features are taken by calculating time and attribute
differences from the 𝑀𝑀 most frequently occurring event
diagrams over a population. For example, if the 20 most
frequent diagrams are desired, and each event has 6 attributes,
the feature vector 𝑓𝑓 would consist of 20*(1+6) = 140 values (1

time different and 6 attribute differences for each diagram).
The feature vectors are then normalized prior to classification.

E. System Design

In general, Android doesn’t allow applications to track
other ones, unless the device is "rooted". This means that a
custom keyboard has to be created to facilitate keystroke
capture. Android provides specific APIs for creating Input
Method Editors (IMEs). A keyboard is a special case of such
IME.

Fig. 1. System design overview.

Figure 1 demonstrates a basic overview of the system
architecture. At the heart of the IME, there is always a class
which acts as an IME service. In the case of this particular
system, this is the class BioKeyboard. When the system
requires an IME to be present on the screen, it calls the hooks
defined in this class, which is responsible for initialization,
showing the keyboard views, and reporting entered characters
to the system. Most importantly, this class captures pressed
keys and other data and generates keystroke events based on
the captured data (indicated on the figure as a rectangle with a
dashed outline).

Currently, each keystroke event contains the following
information:

1) The key code of the touched key;
2) Current keyboard layout (QWERTY or one of the symbol

layouts);
3) Current screen orientation;
4) Whether the key was pressed or released;

B7.4

5) Time of the key press measured in ms since the time
device was booted excluding time spent in deep sleep;

6) Exact touch coordinates in pixels;
7) Finger pressure on the screen;
8) Size and shape of the touched area;
9) Current accelerometer values indicating the position of the

device;
10) The change of the accelerometer values since the last

measured value.

All these data can be divided into four large groups
described in the previous section of the article, as shown in
Table 1.

TABLE 1
GROUPS OF DATA

Common Keyboard Data Key code
Event time

Press or release
Touch Screen Data Touch coordinates

Finger pressure

Touched area size and shape
Configuration-based Data Keyboard layout

Screen orientation
Sensor-based Data Device position

Change in device position

All the events are then sent to the buffer class. Its main
task is to accumulate the events up to a certain threshold and
then asynchronously feed them to some consumer. A
consumer could be simply a class which transmits the data
over the network. However, mobile networks are in general
not reliable. If the data can’t be transmitted from the buffer, it
will be lost when the input session ends, which necessitates
the presence of some kind of persistent storage. The ideal
choice for such storage is SQLite databases, which are built
into Android. The data in the buffer gets transmitted to the
database for permanent storage and can be retrieved later. The
database also provides a way to export the stored data in
various ways (shown as ellipses on the figure). It can transmit
currently contained data over the network for feature
extraction and further analysis or it can also export the data
into a local file.

Besides the events generated by motion events and key
presses, the database maintains sessions. Each session starts
when the user pulls up a keyboard, and ends when it goes
away. Each session has the following records associated with
it:

- Current user name;
- Time when the session started;
- Information about the device (such as the Android version

and the CPU architecture);
- System locale;
- Arbitrary tags.

Every event is associated with a session. Therefore, it is
possible to know which user generated a given event and
when it happened. It has been mentioned previously that the
timestamp in the events is calculated as the amount of time
that has passed since the OS was booted, so it can’t be used to
tell when the session happened.

Finally, Android keyboards may have a settings activity
which is useful to us to manipulate the keyboard. The obvious
use for the activity is to provide a way to adjust keyboard
parameters, such as the user locale. It also provides a way to
manipulate stored data. For example, it may be used to initiate
export of the data stored in the database or to erase current
data.

F. Additional System Design Considerations

1) Density-independent Pixels: Unlike such platforms as
iOS, Android is available on a huge variety of devices, which
have different screen sizes and resolutions. This effectively
means that the applications have to be flexible and adapt
themselves to the present screen. To facilitate this, Android
provides a notion of density-independent pixels. Each screen
is assigned one of the predefined densities (there are currently
five major density buckets [1]). Each of them has a certain
coefficient that corrects the distance in pixels, so that the
applications may work with the same values regardless of the
pixel density on the given device.

The main concern for the biometric system is that
currently the coordinates of screen touches are not density-
independent. This means that if the user switches to another
device with different screen parameters, the system will report
inconsistent values. This is a potential issue that will be
addressed depending on the experimental results.

2) Accelerometer Values: Currently, the keyboard
constantly monitors the values indicated by the accelerometer,
and when the key press happens, the latest values which
arrived from the accelerometer are recorded into the generated
event. Unfortunately, there is no polling mechanism for
accelerometer values. They are delivered via callbacks on the
main application thread to the registered receiver, in our case
the IME service. Key presses are generated in the exact same
manner. Currently, there are no mechanisms that ensure that
the event generated on the key press includes the
accelerometer values related to the particular key press.

Also, there are no guarantees about the latency between
the key press and the arrival of the accelerometer values. This
issue could be mitigated by decreasing the sampling rate.
However, according to the Android Reference, the sampling
rate requested by the application is merely a suggestion to the
system and can’t be guaranteed to be fulfilled [2]. Therefore,
the accelerometer values are inherently device dependent.

The aforementioned issues pose the question of reliability
of the accelerometer values as they are presently captured.
One possible way is to separate keystroke events from the
accelerometer events and capture them independently. After
that, a special algorithm should be devised to merge them into
single stream of events. Possible ways to tackle this problem

B7.5

may become clearer after the experimental results are
obtained.

G. System Usage

The system is designed to operate as an ordinary Android
keyboard. Therefore, users should be familiar with using it. In
order to capture and send some data, the following steps must
be performed:

1. Turn on the keyboard in the system settings (done only
once, after installation);

2. (Optional) enter current user’s name in the keyboard
settings;

3. Pull up the text field the user wants to type the text into
(for example, messaging);

4. Select the keyboard by pulling the notification panel and
choosing the input method;

5. Type the text into the field;
6. Close the keyboard so the session ends.

In the third step, the actual text field that is used to input
the text is mostly irrelevant to the function of the system, as
Android treats all the fields uniformly. Its only requirement is
that it must not place any special constraints on the typed text.
For example, it is not reasonable to use a password or URL
field for the purposes of capturing data.

The second step is completely optional. However, later it
will be easier to distinguish which user generated certain
events, so it should be performed. The user’s name will be
associated with the keyboard session during which the events
were generated.

After the last step is completed, the input has already been
captured. However, it is stored locally on the device in a
database of the system. So, in order to view it or process it, the
data should be exported in one of the following two ways: to a
local file, or to the network for further processing. Both of
these actions are carried out using the settings activity.

The settings activity is used to set various preferences and
control the system. If the user wishes to save the data in the
system to a local file, he should select the menu item "Export
data to the storage", which will save the file in the CSV format
to the root folder of the local storage (internal or the SD card,
depending on the device). If the user wishes to submit results
for processing to the server, he should select the item "Export
data over the network". In this case, a network connection
must be present on the device for the transmission to be
successful. When the data export finishes successfully or fails,
the user will get a message with the operation result
confirmation.

V. DATA COLLECTION

The working version of the keyboard app was installed and
tested on a physical device in order to check if data is being
collected correctly, as well as to know the range of values.

The data was collected from several students on Nexus 4,
Nexus 5, and Samsung Galaxy S4 devices in both portrait and

landscape mode. As described in the previous sessions, the
system collects a wide range of data, but it depends on the
sensors available on each particular device. We have collected
the following types of data:

- Action – press or release;
- Entity – code of pressed key;
- Keyboard – keyboard type (mostly QWERTY because we

didn’t use numbers in the experiments);
- Orientation – portrait or landscape;
- Time – timestamp of the event;
- Coordinates of the touch position;

Pressure of the touch;
- Touch major/minor and tool major/minor – size of the

clicked key;
- Screen data: pixel density (both horizontal and vertical) in

dots per inch and width and height of the screen in pixels;
- Sensor-based data: rotation (X, Y and Z) and acceleration

(X, Y and Z);
- Session data: session ID, session time and user name.

Based on key press and key release values we can measure
how long each user pressed each button
(𝑡𝑡𝑖𝑖𝑚𝑚𝑒𝑒𝑟𝑟𝑒𝑒𝑙𝑙𝑒𝑒𝑎𝑎𝑠𝑠𝑒𝑒−𝑡𝑡𝑖𝑖𝑚𝑚𝑒𝑒𝑝𝑝𝑟𝑟𝑒𝑒𝑠𝑠𝑠𝑠) or the time between each key
(𝑡𝑡𝑖𝑖𝑚𝑚𝑒𝑒𝑟𝑟𝑒𝑒𝑙𝑙𝑒𝑒𝑎𝑎𝑠𝑠𝑒𝑒 − 𝑡𝑡𝑖𝑖𝑚𝑚𝑒𝑒𝑝𝑝𝑟𝑟𝑒𝑒𝑠𝑠𝑠𝑠, where 𝑡𝑡𝑖𝑖𝑚𝑚𝑒𝑒𝑟𝑟𝑒𝑒𝑙𝑙𝑒𝑒𝑎𝑎𝑠𝑠𝑒𝑒 corresponds to the
previous key). By using X and Y values for each key press
and key release event, we can calculate how much a user is
using their finger while touching the screen.

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ��𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�
2 + (𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎)2

By using screen width and height in pixels, we can obtain
relative distance, and by using recorded pixel density, we can
obtain physical distance in inches.

Another type of data that can be used to differentiate
between different patterns is the pressure that users touch the
screen with. Users can touch different parts of the keyboard
with varying amounts of pressure, which can be associated
with the use of different fingers.

Using touch position, screen width and height, and the key
code, we can calculate the part of the key that is pressed
relative to its center. This position can also differ for different
keys. For example, a user can touch the right side of a key for
keys located on the right side of the screen and vice-versa.

The last kind of data that can be utilized is sensor-based
data. This data is collected using separate callbacks, as
described previously, so the timestamp may not be exactly the
same as for the keyboard data. However, we should closely
analyze it and try to find how it might relate to keyboard event
data. Users might hold or move their device in different
directions and with varying values while typing. Phone
position and movement might also differ when pressing keys
on other parts of the screen.

B7.6

VI. DATA COLLECTION PROCESS

One of the necessities in the development and adaptation
of the Biometric Keyboard on the Android platform is
collecting data from users, so that it can be analyzed and
compared. In doing so, it is desirable to collect data from users
in a manner that a user might encounter in real life. This takes
into consideration that a user may type differently within
different contexts or environments, depending on the
particular task at hand. For example, a user may type
differently when writing an informal text message to a friend
when compared to typing their password when logging into
their bank account.

The main emphasis in the data collecting template is to
recreate scenarios and common combinations of keyboard
characters that are likely to occur in real life. Therefore, rather
than asking participants to systematically push every key on
the keyboard, the data collecting template is designed as a
variety of typing activities that allow the user to express their
personal typing style, while at the same time maintaining an
efficient structure that maximizes the value of organized data
over random typing.

Another advantage of a data collecting template is that it
provides a means to normalize the data that is being collected.
Since all the participants will be following a standardized
template, it will be possible to compare equal data samples
between two or more users and contrast the distinctions
between each user’s biometric characteristics. In this sense,
the template provides a standardization of measurable units
across the research population.

The scenarios included in the template were based on
practicality and variety. Each scenario is designed to collect a
specific type of data and the focus is on common real life
typing paradigms. The current data-collecting template can be
found at this web address:
http://webpage.pace.edu/pn49716p/biokeyboard-text-
template.html

The scenarios that are included in a data-collecting
template are as follows:

1. Write a review in free form;
2. Type and confirm a password;
3. Type and confirm an email address;
4. Type phrases exactly as they are written;
5. Schedule an event to a calendar;
6. Type dates;
7. Type phone numbers;
8. Type an address;
9. Type a credit card number.

Finally, since the data collecting process requires the
participation of real people, it is important that ethical
guidelines are adhered to when collecting data. No user will
have their data recorded without their knowledge. The data
that is collected from the participants is kept private and not
shared with external entities.

VII. EXPERIMENTAL RESULTS

Significant results were derived from the analysis of
specific indicators within the March 14th data collection.
Several examples are displayed below to illustrate the
findings.

TABLE 2
AVERAGE PRESSURE DEVIATION

User Pressure 1 Pressure 2 Deviation
A .5708 .5736 .0028
B .5217 .5283 .0066
C .5769 .5804 .0035
D .5616 .5749 .0133
E .5148 .5474 .0328
F .5720 .5651 .0069
G .4870 .5099 .0229
H .5956 .5906 .0050
I .5777 .5771 .0006
J .5497 .5611 .0114

Table 2 demonstrates the deviation in average pressure
applied between the first and second input sessions of
individual users. The average deviation of .0106 indicates the
viability of average pressure as an authentication mechanism
for a single user. However, statistics such as the total range
between values of .1086 and the similarity in values between
users, shown by the .0096 range between the highest and
lowest average values generated by users A, C, and I, signify
that additional or better metrics are required to avoid a
substantial number of false positives.

TABLE 3
TOUCH LOCATION SIZE

User Major Axis Minor Axis Size
A 136.7520 136.7520 136.7520
B 114.9859 114.9859 114.9859
C 147.5673 147.5673 147.5673
D 124.3318 124.3318 124.3318
E 118.2454 118.2454 118.2454
F 135.1422 135.1422 135.1422
G 119.2033 119.2033 119.2033
H 141.7102 141.7102 141.7102
I 133.3503 133.3503 133.3503
J 127.0121 127.0121 127.0121

User Major Axis Minor Axis Size

A 134.4455 134.4455 134.4455
B 123.4335 123.4335 123.4335
C 149.8096 149.8096 149.8096
D 128.4926 128.4926 128.4926
E 123.5941 123.5941 123.5941
F 134.5176 134.5176 134.5176

B7.7

http://webpage.pace.edu/pn49716p/biokeyboard-text-template.html
http://webpage.pace.edu/pn49716p/biokeyboard-text-template.html

G 120.8500 120.8500 120.8500
H 143.6570 143.6570 143.6570
I 128.0017 128.0017 128.0017
J 133.5773 133.5773 133.5773

Table 3. Session 1 (top) and 2 (bottom).

Table 3 demonstrates the average sizes of the touch
locations of each user from their first and second sessions. An
interesting development obtained from analyzing these
measurements is that the system registers all input as a circle,
rather than the standard oblong or elliptical shapes often
associated with a fingerprint. This inability to distinguish
differences in finger shape makes authentication slightly more
difficult by removing a possible variable from the discussion.
Also, the average deviation between sizes of 3.8636 indicates
considerable variability between individual inputs, increasing
the concern of false rejection. However, the range between the
smallest and largest average sizes of 34.8237 indicates that the
large deviation should still be within the realm of statistical
significance and authentication using touch location size as a
metric should still be possible.

More analysis will be conducted pending future data
processing.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have implemented a software keyboard
system for handheld devices that is capable of capturing
distinct biometric features. This system allows us to collect
data, run experiments, and extract features in order to
authenticate users of handheld devices. As presented in the
experiment section, we have successful collected data from a
total of 10 users using the current system, and extracted 14
distinct features that will help us in developing a feature
vector for authenticating users.

In the future, our work will focus on developing the
feature vector, and enhancing the system. The major system
enhancement will be implementing the gesture input and
performing touch screen analysis which will help improving
the strength of the feature vector in authenticating users. In
addition, the system should be able to track cursor movements
and spelling suggestion selections on the screen. Other minor
system enhancements will include upgrading the settings
activity to view, delete, and export captured data selectively
before submitting the data for processing. Furthermore,
improvements to the keyboard GUI need to be made in order
to make it more user friendly in both portrait and landscape
orientation.

REFERENCES
[1] Metrics and grids. Android Open Source Project. (Accessed

October 2013). [Online]. Available:
http://developer.android.com/design/style/metrics-grids.html

[2] SensorManager | Android Developers. Android Open Source
Project. (Accessed October 2013). [Online]. Available:

http://developer.android.com/reference/android/hardware/Sensor
Manager.html

[3] (2013, January) Developing markets will drive smart phone
market growth in 2013. Canalys. (Accessed October 2013). [Online].
Available:
http://www.canalys.com/static/press_release/2013/canalyspress-
release-161013-developing-markets-will-drive-smart-phonemarket-
growth-2013.pdf

[4] N. Clarke and S. Furnell, “Authenticating mobile phone users
using keystroke analysis,” International Journal of Information
Security, January 2007.

[5] (2013, August) Gartner says smartphone sales grew 46.5
percent in second quarter of 2013 and exceeded feature phone sales
for first time. Gartner. (Accessed October 2013). [Online]. Available:
http://www.gartner.com/newsroom/id/2573415

[6] D. Gelormini, “Optimizing the android virtual keyboard: A
study of user experiences,” Master’s thesis, The University of
Scranton, 2012.

[7] R. Guidorizzi. Active authentication. Defense Advanced
Research Projects Agency. (Accessed October 2013). [Online].
Available:
http://www.darpa.mil/Our_Work/I2O/Programs/Active_Authenticati
on.aspx

[8] N. Henze, E. Rukzio, and S. Boll, “Observational and
experimental investigation of typing behaviour using virtual
keyboards for mobile devices,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. ACM, May
2012.

[9] E. Lau, X. Liu, C. Xiao, and X. Yu, “Enhanced user
authentication through keystroke biometrics,” Massachusetts Institute
of Technology, Tech. Rep., December 2004.

[10] J. V. Monaco, N. Bakelman, S. Cha, and C. C. Tappert,
“Recent advances in the development of a keystroke biometric
authentication system for long-text input,” in Proc. 2013 European
Intelligence and Security Informatics Conference, Sweden, August
2013.

[11] Implicit authentication for mobile devices. Palo Alto
Research Center. (Accessed October 2013). [Online]. Available:
https://www.usenix.org/legacy/event/hotsec09/tech/full_papers/jakob
sson.pdf

[12] C. C. Tappert, S. Cha, M. Villani, and R. S. Zack,
“Keystroke biometric identification and authentication on long-text
input,” Int. Journal Information Security and Privacy (IJISP), 2010.
[Online]. Available:
http://www.csis.pace.edu/~ctappert/papers/2010IJISP.pdf

[13] S. Zahid, M. Shahzad, S. A. Khayam, and M. Farooq,
“Keystroke-based user identification on smart phones,” in RAID ’09
Proceedings of the 12th International Symposium on Recent
Advances in Intrusion Detection. Springer-Verlag Berlin, Heidelberg,
October 2009.

B7.8

http://developer.android/

	I. INTRODUCTION
	II. RELATED WORK
	III. BACKGROUND
	IV. METHODOLOGY
	A. Keyboard Types and Features
	B. OS Choice
	C. Raw Data Capture
	D. Features
	E. System Design
	F. Additional System Design Considerations
	G. System Usage

	V. DATA COLLECTION
	VI. DATA COLLECTION PROCESS
	VIII. CONCLUSIONS AND FUTURE WORK
	REFERENCES

